资源类型

期刊论文 651

年份

2023 40

2022 52

2021 52

2020 41

2019 60

2018 31

2017 35

2016 27

2015 32

2014 39

2013 24

2012 22

2011 20

2010 41

2009 26

2008 17

2007 23

2006 8

2005 13

2004 9

展开 ︾

关键词

有限元 7

增材制造 4

建模 4

有限元法 4

ANSYS 3

裂缝 3

SWAT模型 2

三维有限元 2

人工智能 2

代理模型 2

力学模型 2

动力学 2

可拓学 2

可视化 2

复杂系统 2

建模仿真 2

数值模拟 2

有限元分析 2

机器学习 2

展开 ︾

检索范围:

排序: 展示方式:

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 304-315 doi: 10.1007/s11709-013-0213-y

摘要: In the present paper, a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies. The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level, and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level. The link between scales is made using a computational homogenization method. The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element, kinematic conditions, contact constraints, and elimination of overlap satisfied for every particle. The method could be used in a variety of problems that can be represented using granular media.

关键词: homogenization     two-scale     representative volume element     compaction     granular assembly     finite element method    

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 160-166 doi: 10.1007/s11709-014-0257-7

摘要: Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.

关键词: backward erosion piping     groundwater flow     3D finite element method (FEM)    

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 339-347 doi: 10.1007/s11709-010-0078-2

摘要: In this paper, a concurrent simulation framework for fatigue crack growth analysis is proposed using a novel small time scale model for fatigue mechanism analysis and the extended finite element method (X-FEM) for fatigue crack growth simulation. The proposed small time scale fatigue model does not require the cycle counting as those using the classical fatigue analysis methods and can be performed concurrently with structural/mechanical analysis. The X-FEM greatly facilitates crack growth simulation without remeshing requirements ahead of the crack tip as in the classical finite element method. The basic concept and theory of X-FEM was briefly introduced and numerical predictions of stress intensity factors are verified with reference solutions under both uniaxial and multiaxial loadings. The small time scale fatigue model is integrated into the numerical simulation algorithm for concurrent fatigue crack growth analysis. Model predictions are compared with available experimental observations for model validation.

关键词: small time scale model     extended finite element method (X-FEM)     crack growth     multiaxial    

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 107-113 doi: 10.1007/s11709-014-0268-4

摘要: The Green-function-based multiscale stochastic finite element method (MSFEM) has been formulated based on the stochastic variational principle. In this study a fast computing procedure based on the MSFEM is developed to solve random field geotechnical problems with a typical coefficient of variance less than 1. A unique fast computing advantage of the procedure enables computation performed only on those locations of interest, therefore saving a lot of computation. The numerical example on soil settlement shows that the procedure achieves significant computing efficiency compared with Monte Carlo method.

关键词: multiscale     finite element     settlement     perturbation     random field     geotechnical    

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 364-379 doi: 10.1007/s11709-018-0470-x

摘要: The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering applications in the past few years. However, its application in numerical methods, especially in developing new shape functions, has attracted much interest in recent years. These shape functions possess the potential for performing better than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach and the results are compared with available references.

关键词: maximum entropy FEM     fully coupled multi-phase system     porous media    

Moisture diffusion behavior of permeable fiber-reinforced polymer composite

Jianjiang YANG, Qingsheng YANG, Lianhua MA, Wei LIU,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 347-352 doi: 10.1007/s11465-010-0093-y

摘要: A unit cell approach is employed to predict the effective moisture diffusion property in fiber-reinforced biopolymer. The permeable fibers distributed in the matrix are taken as inclusion phases in the system. Based on a unit cell model, the calculation method for moisture diffusion coefficients is developed in this paper. Moisture diffusion property and effective diffusion coefficients are numerically investigated under different temperature and volume fractions of fibers. The calculated results agree well with Gueribiz’s solutions. Therefore, it is reliable in predicting moisture diffusion property of composite using the unit cell model. The present result shows that the effective diffusion coefficient of a composite depends on both temperature and volume fraction of fibers. The effective diffusion coefficient of regular hexagon pattern composite is larger than that of square pattern at the same temperature and volume fraction.

关键词: fiber-reinforced biopolymer     effective diffusion coefficient     unit cell     finite element modeling (FEM)    

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 646-663 doi: 10.1007/s11709-020-0584-9

摘要: There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

关键词: thermo-active diaphragm wall     finite element analysis     thermo-hydro-mechanical coupling     ground source heat pump    

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 428-434 doi: 10.1007/s11709-009-0059-5

摘要: Cement-stabilized soil bases have been widely used in expressways due to its high strength, appropriate stiffness, good water resistance, and frost resistance. So far, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much. In this paper, the 3D elastic-plastic finite element method (FEM) was used to analyze the mechanical behaviors and structural characteristics of cement-stabilized soil bases from construction to operation. The pavement filling and the traffic loading processes were simulated, and a contact model was used to simulate the contact behavior between each layer of the pavement. Considering the construction process, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were studied under asphalt-concrete pavement conditions. Furthermore, the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed, and some suggestions were put forward for the design and construction of cement-stabilized soil bases.

关键词: different     strength     asphalt-concrete pavement     FEM     appropriate stiffness    

FEM-based strain analysis study for multilayer sheet forming process

Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 373-379 doi: 10.1007/s11465-015-0371-9

摘要:

Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.

关键词: finite element method (FEM)     strain analysis     multilayer sheet forming    

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 101-114 doi: 10.1007/s11709-014-0254-x

摘要: In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.

关键词: jointed plain concrete pavements (JPCP)     curling and warping     sensitivity analyses     rigid pavement analysis and design     finite element analysis (FEA)    

Lamb wave propagation modeling for structure health monitoring

Xiaoyue ZHANG, Shenfang YUAN, Tong HAO

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 326-331 doi: 10.1007/s11465-009-0045-6

摘要: This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.

关键词: Lamb wave     modeling     LISA/SIM theory     finite difference equation     finite element    

Finite element modeling of counter-roller spinning for large-sized aluminum alloy cylindrical parts

Dawei ZHANG, Fan LI, Shuaipeng LI, Shengdun ZHAO

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 351-357 doi: 10.1007/s11465-019-0528-z

摘要: Counter-roller spinning (CRS), where the mandrel is replaced by rollers, is an effective means of manufacturing large-sized, thin-walled, cylindrical parts with more than 2500 mm diameter. CRS is very complex because of multi-axis rotation, multi-local loading along the circumference, and radial-axial compound deformation. Analytical or experimental methods cannot fully understand CRS. Meanwhile, numerical simulation is an adequate approach to investigate CRS with comprehensive understanding and a low cost. Thus, a finite element (FE) model of CRS was developed with the FORGE code via meshing technology, material modeling, determining the friction condition, and so on. The local fine mesh moving with the roller is one of highlights of the model. The developed 3D-FE model was validated through a CRS experiment by using a tubular blank with a 720 mm outer diameter. The developed 3D-FE model of CRS can provide a basis for parameter optimization, process control, die design, and so on. The data on force and energy predicted by the 3D-FE model can offer reasonable suggestions for determining the main mechanical parameters of CRS machines and selecting the motors. With the predicted data, an all-electric servo-drive system/machine with distributed power was designed in this work for CRS with four pairs of rollers to manufacture a large-sized, thin-walled, cylindrical part with 6000 mm diameter.

关键词: large-sized cylindrical part     counter-roller spinning     aluminum alloy     finite element method     distributed power    

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 57-62 doi: 10.1007/s11709-009-0005-6

摘要: For the design and operation of a floating bridge, the understanding of its hydroelastic behavior in waves is of great importance. This paper investigated the hydroelastic performances of a ribbon bridge under wave action. A brief introduction on the estimation of dynamic responses of the floating bridge and the comparisons between the experiments and estimation were presented. Based on the 3D hydroelasticity theory, the hydroelastic behavior of the ribbon bridge modeled by finite element method (FEM) was analyzed by employing the mode superposition method. And the relevant comparisons between the numerical results and experimental data obtained from one tenth scale elastic model test in the ocean basin were made. It is found that the present method is applicable and adaptable for predicting the hydroelastic response of the floating bridge in waves.

关键词: hydroelasticity     ribbon bridge     wave     finite element method (FEM)    

标题 作者 时间 类型 操作

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

期刊论文

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

期刊论文

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

期刊论文

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

期刊论文

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

期刊论文

Moisture diffusion behavior of permeable fiber-reinforced polymer composite

Jianjiang YANG, Qingsheng YANG, Lianhua MA, Wei LIU,

期刊论文

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

期刊论文

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

期刊论文

FEM-based strain analysis study for multilayer sheet forming process

Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR

期刊论文

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

期刊论文

Lamb wave propagation modeling for structure health monitoring

Xiaoyue ZHANG, Shenfang YUAN, Tong HAO

期刊论文

Finite element modeling of counter-roller spinning for large-sized aluminum alloy cylindrical parts

Dawei ZHANG, Fan LI, Shuaipeng LI, Shengdun ZHAO

期刊论文

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

期刊论文